Paper Chemistry… It’s more common than you think!

Presentation for IMFA – March 2015:
The Importance of Monitoring Chemistry and Charge Balance
In Thermoforming of Cellulose Fibers

March 2015
Alternative pulping – Elephant Paper

One elephant =>
Approximately 115 sheets of paper per day.
- Elephant is (literally) the digester
- No chlorine is required
- No harsh chemicals required for pulping

March 2015
Objective:
(maximize productivity; minimize downtime and waste)

March 2015
Traditional raw materials – North America
(Managing fiber sources used to be easier.)

Black Spruce
White Pine
Birch
Aspen (Cloquet)
Loblolly Pine (plantation)
Slash Pine
Yellow Poplar
Cottonwood

March 2015
The Future – Part 1 –

- Corn stalk residue
- Wheat straw pulps

The Future – Part 2 –

- Industrial hemp
- Bagasse fiber
- Sawgrass

March 2015
The Future – Part 3: Recycled content –

Eucalyptus

The Future – Part 4: Filler pulps –

Semi-mechanical pulps

March 2015
The Future – Part 4 (fillers: Hamburger Helper)

Kaolin
Bentonite
Titanium Dioxide

Calcium Carbonates

<table>
<thead>
<tr>
<th>PCC</th>
<th>GCC</th>
</tr>
</thead>
</table>

March 2015
<table>
<thead>
<tr>
<th>Past/Present</th>
<th>Future</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree-based/Virgin</td>
<td>Recycled; non-tree based</td>
</tr>
<tr>
<td>Chemical pulping</td>
<td>Mechanical pulping</td>
</tr>
<tr>
<td>Low colloidal materials</td>
<td>High colloidal / dissolved materials content</td>
</tr>
<tr>
<td>bleached</td>
<td>Unbleached / deinked / reprocessed</td>
</tr>
<tr>
<td>Consistent in properties</td>
<td>Inconsistent in properties (recycled)</td>
</tr>
<tr>
<td>Clean</td>
<td>Dirty/Contaminated</td>
</tr>
<tr>
<td>Low silica levels</td>
<td>High silica levels</td>
</tr>
<tr>
<td>Good physical properties</td>
<td>Moderate to poor physical properties</td>
</tr>
</tbody>
</table>

Much harder to manage, due to high trash levels
Trash – Grouch's Like It, but...

- It stays dissolved only at first...
- And then it drops out of solution at the worst possible time...
 - Scaling
 - Deposits on tooling
 - Blocked vacuum lines
 - Foaming (stable; doesn’t go away)
 - Contamination in the press-forms

Grouch's tend to be negative.
Trash Components (negatively-charged in solution; colloidal in nature)

Fiber fines types

“Fiber-like”
- Ray
- Cut fiber

“Fibrillar”

“Split fibers”

M. Hubbe

Xylan + derivatives

Galactoglucomannan + derivatives

Lignin + derivatives

Shives

March 2015
Other, un-natural trash components from broke/recycled fiber sources

Dispersants from latexes, mineral fillers and other colloidal substances (negatively-charged)

Dissolved minerals (carbonates, talc, clays, silicas – negatively-charged)

Starch and other polymeric binder and adhesive materials

Adhesives from tapes and PS label stock

March 2015
What happens when anionic trash levels are high

Retention vs. Anionic Colloids

Clay content (%)

0 5 10 15

Contaminants (mg/g fiber)

0 1 2 4 6 8 10

TMP handsheets
20% clay
0.5% PEI

Kraft lignin
Sulfite lignin

March 2015
Another problem – Formation

High anionic trash levels => ugly, clumpy paper; dewaterers poorly despite high porosity

Controlled anionic trash => smoother, more aesthetically-pleasing; drains easily

March 2015
MAJOR issue – drainage / energy consumption

• Molded fibers retain more water after processing
 – Reactive size takes longer to cure
 – Other chemicals (ex. Fluorochemicals) work poorly, due to insufficient cure

• Higher temperatures =>
 – Greater energy consumption
 – Scorched forms; poorer aesthetics
A Bad Example from the world of Fluorochemistry

Wet end (Actual)

Fluorochemical: Cationic (+)

Pulp

Anionic trash / colloid
Resin, inorganic particle, etc.

The FC adsorbs on both pulp, fines and anionic trash

Oil and grease resistant paper

Machine Wire

H₂O

Wasted fluorochemical & trash solids

Poor OGR; less fluorochemical retained

Ca(CO₃)₂

March 2015

H₃C

COOH

CH₃(CH₂)₄CH=CHCH₂CH=(CH₂)₇COOH
Pretreatment of Anionic Trash Neutralization (using a cationic polymer fix agent)

Wet end

Cationic polymer

Cationic fluorochemical

Fluorochemical Absorbed on pulp

Better performance, due to better retention of the FC

Machine Wire

Neutralized trash & solids

March 2015

Oil and grease Resistant box or plate
Dealing with the anionic trash

- Popular cationic fix agents
 - PAAE
 - EPIDMA and other polyamines
 - PolyDADMAC
 - polyethylene imines (PEIs)
 - Cationic PAM

- For difficult applications (ex. BCTMP)
 - Polyethylene Oxide
 - Blends of cationic fix agents

March 2015
Best tools for management of charge balance in furnish

March 2015
Zeta Potential is the potential difference between the dispersion medium and the stationary layer of fluid attached to the dispersed particle.

For paper furnishes: Dispersed particles are cellulose; fines; granules of minerals (carbonates, talcs, etc.)

Diagram showing the ionic concentration and potential difference as a function of distance from the charged surface of a particle suspended in a dispersion medium.
<table>
<thead>
<tr>
<th>Zeta potential [mV]</th>
<th>Stability of colloidal substances in solution</th>
<th>Implications for paper formation</th>
<th>Implications for retention</th>
</tr>
</thead>
<tbody>
<tr>
<td>from 0 to ±5</td>
<td>Rapid coagulation or flocculation</td>
<td>Best formation; fine grain structure</td>
<td>Optimal first pass retention</td>
</tr>
<tr>
<td>from ±10 to ±30</td>
<td>Incipient instability</td>
<td>Okay, but some loss of formation and grain observed.</td>
<td>Good first pass retention</td>
</tr>
<tr>
<td>from ±30 to ±40</td>
<td>Moderate stability</td>
<td>Formation beginning to suffer; dissolved substances present</td>
<td>Fair first pass retention; dissolved substances present</td>
</tr>
<tr>
<td>from ±40 to ±60</td>
<td>Good stability</td>
<td>Mediocre formation and drainage; lumpy paper</td>
<td>Mediocre first pass retention; moderate dissolved materials</td>
</tr>
<tr>
<td>more than ±61</td>
<td>Excellent stability</td>
<td>Poor formation; drainage; high moisture levels</td>
<td>Low first pass retention; high trash levels</td>
</tr>
</tbody>
</table>

March 2015
Typical fix agent curve for virgin pulps

- Ideal for retention is in blue region (aka the “dielectric point”)
 - Zeta potential of -5 to +5 mV
 - Fix agent efficiency decreases near the dielectric region
Typical fix agent curve for recycled pulp (OCC)

- OCC = Succotash
 - Kraft linerboard
 - Groundwood corrugate
- Complex / nonlinear relationship between cationic demand and zeta potential
 - Sometimes the CD titrator lies!

Dielectric region: 0.30-0.45% PAAE

March 2015
Fix agent curve for blended pulp

- Complex / nonlinear relationship between cationic demand and zeta potential
- Cationic demand actually INCREASES inside the dielectric region before “flipping” fully cationic
Step 2 – use of proflocculents and drainage aids

- **Anionic PAM**
 - Causes fibers to flocculate together
 - Use judiciously (to avoid poor formation)

- **Colloidal silica**
 - Increases internal surface area
 - Increases porosity for better sheet drainage

Note: pro-flocc & silica combo often used for continuous papermaking as above

March 2015
Scale formation:

March 2015
pH – known to be an issue for some treatment chemicals

Water pH used for dilution

Acidic Neutral Alkaline

Additive #1
(Stable pH under 5.5)

Additive #2
(Stable pH under 5.5)

Additive #3
(Stable pH over 6.0)

Unstable

Unstable

Unstable
Stable foam:
(Adding a defoamer doesn’t solve the problem!)

Does not get better with time or defoamer addition

Better; does not require defoamer

March 2015
These are bad news whenever / wherever they occur! Stable foam is often the result of this, in combination with other system components.

March 2015
Problem furnish example (again from the world of fluorochemistry): Precipitated calcium carbonate

Two different cationic fluorochemicals: 62-64 GSM; commercial 62/38 furnish; EPIDMA fix; 1% PCC

Two different cationic fluorochemicals: 133-139 GSM; commercial 62/38 furnish; EPIDMA fix; 1% PCC

The improved buffer system for FC #2 made the difference here.
Problem furnish example #2 – softwood / uncoated freesheet waste fiber blend

Recycled has high ash content – but better buffer for #2 helps
Key Points:

- This is a competitive industry
- There are pressures not to use trees anymore
 - Economic
 - Environmental

- Replacement fibers are often not as good as trees
 - Lacking in physical properties
 - Loaded with anionic trash, fillers, dirt, glue, flies, staples, silica, etc.
 - Need to adjust chemistry to compensate for negative charge in solution

- Thermoformers need to watch the following w/ new school fiber sources
 - charge potential (they tend to be negative)
 - pH (tends to be higher than before)
Key Points:

• **A focus on chemistry can only help**
 – Coagulant / proflocculent / colloidal silica packages are available; can
 • Manage anionic trash
 • Ensure fines retention
 • Optimize formation
 • Improve energy efficiency

• **However, need to consider compatibility of chemicals in use**
 – pH variations can cause “kick-out” of components
 – “kick-out” leads to foam (bad); precipitates (worse);
 • Need for costly machine shutdowns / cleanings; lost production time
 • Premature tooling changes
 – Some chemicals are shear-sensitive; prone to scale formation or deposits on machine
 – Very important consideration for fluorochemicals (often the most expensive component)
Acknowledgements

- Dr. Martin Hubbe at NCSU
- The Paper Discovery Center – Appleton, WI
- Junsuke Kawana, Motohiro Takemura and Takuma Yamamoto (AGC-Japan)
- Tatsuya Masuda, Bill Fiedler and Tim Johnson (AGC Chemicals Americas)
- AGC Chemicals Americas customers

March 2015
AGC Chemicals Americas -

Partnering with you for a better future!

March 2015